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Introduction

Classical random walks suffer from a few drawbacks: localization

phenomena, limited expressiveness, slow mixing rates. ..

Extend the random walk idea by accounting for an earlier step in

navigation:
P(Xer1 = i|Xe = j, Xe—1 = k) = P

SEBEE-EIEIS [EMEE HalX e Y(t): joint probability matrix,.

@ Y(t); =P(Xe =i, Xe—1 = J)

() . i 1ti
‘ ) / e P: stochastic transition tensor,

2Pk =1
o e x(t): probability vector, x(t); = >_; Y(t);-



Introduction

Classical random walks suffer from a few drawbacks: localization
phenomena, limited expressiveness, slow mixing rates. ..

Extend the random walk idea by accounting for an earlier step in
navigation:
P(Xer1 = i|Xe = j, Xe—1 = k) = P

non-backtracking rw node2vec algorithm

®
o e



Introduction

Classical random walks suffer from a few drawbacks: localization
phenomena, limited expressiveness, slow mixing rates. ..

Extend the random walk idea by accounting for an earlier step in
navigation:
P(Xer1 = i|Xe = j, Xe—1 = k) = P

But then we need extra info:
P(Xy =j|Xo=1) = p,’J
Together with xg, this yields the initial condition for a two-phase iteration:

Y(t+1)5 =>4 P Y(t)ix

Y(l),’j =P(Xy =1, X =), {x(t—‘r 1) = Y(t+1)e.



Second-order random walks

The "lifting” idea: Introduce a walker moving from edge to edge,
Pijk = P(Werr = (J, )W = (k,J))

This converts the second-order

rwon V... ...to a first-order rw on E

&

Second-order rw.s on G = (V/, E) correspond to J

first-order rw.s on G = (E, E), the (directed) line graph of G.




Directed line graph

The (directed) line graph £(G) of a digraph G is the graph defined as
follows:

o The vertex set of £(G) is the edge set of G

o (e1,e) is an edge in L(G) iff e, = (i,j) and & = (j, k) in G.
Notation: |V|=n, |E| = m.
Define the source matrix S € R"*™ and the target matrix T € R™*",

Sie:{l e=(i,x*) Tej:{l e = (x,/)

0 otherwise, 0 otherwise.

Then A = ST is the adj. matrix of G and B = TS is the adj. matrix of
L(G). Basically, R=T".



Directed line graph

The (directed) line graph £(G) of a digraph G is the graph defined as
follows:

o The vertex set of £(G) is the edge set of G
o (e1, &) is an edge in L(G) iff &, = (/,j) and ex = (j, k) in G.
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Second-order RWs - construction

Knowing the adjacency matrix B = TS, it is then possible to define the
random walks on the line graph. However, attention must be paid to
some pitfalls, e.g., sink nodes in £L(G).

Example: The non-backtracking random walk cannot be defined in this

raph:
o ¢ QT

The Hashimoto graph and matrix
The non-backtracking random walk can be associated to the RW on the
Hashimoto graph, whose adjacency matrix is the Hashimoto matrix

H=B-BoB",

where o is the Hadamard (entrywise) matrix product.




Second-order RWs - construction

Knowing the adjacency matrix B = TS, it is then possible to define the
random walks on the line graph. However, attention must be paid to
some pitfalls, e.g., sink nodes in £L(G).

The factorization B = ST helps in devising efficient algorithms for matrix-
vector products in £(G). As a result, if graphs and matrices are sparse
then the computational overhead of 2nd-order RWs is irrelevant.

After defining a sound RW on £(G), the quantities of interest need to be
transferred back to the original graph: stationary density, hitting times,

return times. . .




Second-order RWs - stationary density

e L:V i E, the "lifting matrix” e N
e R: E~— V, the “restriction matrix”
R
W, X )
{ t}&f/{ 2 Yoo.--"
Lift

e The lifting matrix L apportions P(X; = i) among the incoming
links and determines P(W; = e) for any edge e = (x,1);
e the restriction matrix collects in each node i € V the

occupancy probabilities of incoming links, so that
P(Xe = i) = Xe(si) P(We = €). Basically, R=T".



Second-order RWs - stationary density

Restrict

o L:V — E, the “lifting matrix” smm g
e R: E~— V, the “restriction matrix”

R

Wy —
L

{Xe}

Y.- -’—
Lift

Theorem

Let P be the transition matrix of {We}. If P is ergodic with
stationary density 7 then the pullback matrix P = RPL is
irreducible, column stochastic, and

Pj =P(Xey1 = i|Xe =j),  Vt>1.

The stationary density of P is 7 = RT.




Hitting times and return times for 2nd-order RWs

Pseudo-theorem

The second-order hitting times matrix for {X;} can be obtained by
an appropriate “squeezing” of the hitting times matrix for { W;}.
(Rigorous statement and explicit formulas in reference.)

Theorem
Let p; be the 2nd-order return time to i € V of {X;}. Then

pi = 1/m;,

where ™ = (m1,...,m,)" is the stationary density of the pullback
matrix P = LPR.
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Figure 1: The mean hitting time (3.7, 7/—;)/n computed from classical

(x-axis) or non-backtracking (y-axis) random walks.
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Red dotted line: the y = x line.
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Figure 2: The non-backtracking mean access time m; = Z}’Zl A=

In classical (first-order) rw.s we have m; = k, Kemeny's constant.

network Guppy Dolphins Householder93
Kemeny 119.03 84.524 97.697




Three-mode stochastic tensors

Three-mode tensor: P = (P ) € R""<",

Tensor-vector-vector product: z = Pxy is the vector
zj = Z PijiXjyi-
ok

Z-eigenvector: A vector x # 0 such that Pxx = Ax for some A\ € R.

Let P be a stochastic tensor, Pjx > 0and > ; P =1. If x,y € S
and z = Pxy then z € S.

The equation x = Pxx admits at least one solution x € S. But
there can also be Z-eigenvectors with |A| > 1.

10



A simplified approach

Previously introduced notation:

e Y(t): joint probability matrix, Y (t); = P(X¢ = i, Xe—1 =)
o P: stochastic transition tensor, P = P(Xiy1 = i| X = j, Xem1 = k)
o x(t): probability vector, x(t); = P(X; = /).

{V(t + 1) = 2k P Y (t)x
x(t+1)=Y(t+1e.

Although exact, this approach requires the time-consuming computation
of the sequence of joint probability matrices {Y(t)}.

Idea

Approximate the exact model by condensing the information in the n x n

matrix Y(t) into one or two probability n-vectors, e.g., replace Y(t) by
x(t)x(t—1)".
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Structured, 2nd-order stochastic process

2nd-order process xx11 = Pxgxk—1 [Li, Ng 2014], [Wu, Chu 2017]

Bilinear (shifted) power method [Kolda, Mayo 2011]

Xk+1 = aPxexi + (1 — a)x

Nonlinear PageRank [Gleich, Lim,Yu 2015]

Xk11 = aPxexe—1 + (1 — a)v, a€(0,1), ves.

Spacey random walk [Benson, Gleich, Lim 2017]

{Xk+1 = Pxiyx

Vi1 = cxk + (1 — c)yx.
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Dobrushin-type coefficients for 3-mode tensors

Let S = {x > 0,e" x = 1} be the set of probability n-vectors
The Dobrushin coefficient

Pxy + P
T(P) = max sup L TPyl
xeS y:eT y=0 ”y”l

Explicit formula:

= 5 max E IPijk, — Pijke + Pitj — P
2 Jkiska

Properties:

e 0<T(P)<2
e T(P)=0 < Pjjx =v; forsome v € S.

o If x =Pxx and x’ = P’x'x" (probability vectors) then
l[x = x"lls < [|P = P[|1/(1 = T(P)).
13



Applications: nonlinear PageRank

Let v € S. The nonlinear PageRank vector
x=aPxx+ (1 - a)v x €S,
corresponds to the stationary solution of

Xkr1 = aPxgxk + (1 — a)v
= (aP + (1 — a)V)xkxk
where Vjj = v; and xg € S. Note: T(V) = 0.
Theorem

If aT(P) <1 (e.g., @ <1/2) then the solution is unique.
Moreover, Vxg € S the iteration converges to x and

I = x[l < (@T(P))*[Ix0 — ]l
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