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Introduction

Classical random walks suffer from a few drawbacks: localization

phenomena, limited expressiveness, slow mixing rates. . .

Extend the random walk idea by accounting for an earlier step in

navigation:

P(Xt+1 = i |Xt = j ,Xt−1 = k) = Pijk

Second-order random walk
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• Y (t): joint probability matrix,.

Y (t)ij = P(Xt = i ,Xt−1 = j)

• P: stochastic transition tensor,∑
i Pijk = 1

• x(t): probability vector, x(t)i =
∑

j Y (t)ij .
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Introduction

Classical random walks suffer from a few drawbacks: localization

phenomena, limited expressiveness, slow mixing rates. . .

Extend the random walk idea by accounting for an earlier step in

navigation:

P(Xt+1 = i |Xt = j ,Xt−1 = k) = Pijk

But then we need extra info:

P(X1 = j |X0 = i) = p′ij .

Together with x0, this yields the initial condition for a two-phase iteration:

Y (1)ij = P(X1 = i ,X0 = j),

{
Y (t + 1)ij =

∑
k PijkY (t)jk

x(t + 1) = Y (t + 1)e.

2



Second-order random walks

The “lifting” idea: Introduce a walker moving from edge to edge,

Pijk = P(Wt+1 = (j , i)|Wt = (k, j))

This converts the second-order

rw on V . . .
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Second-order rw.s on G = (V ,E ) correspond to

first-order rw.s on Ĝ = (E , Ê ), the (directed) line graph of G.
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Directed line graph

The (directed) line graph L(G) of a digraph G is the graph defined as

follows:

• The vertex set of L(G) is the edge set of G

• (e1, e2) is an edge in L(G) iff e1 = (i , j) and e2 = (j , k) in G.

Notation: |V | = n, |E | = m.

Define the source matrix S ∈ Rn×m and the target matrix T ∈ Rm×n,

Sie =

{
1 e = (i , ∗)
0 otherwise,

Tej =

{
1 e = (∗, j)
0 otherwise.

Then A = ST is the adj. matrix of G and B = TS is the adj. matrix of

L(G). Basically, R = TT .
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Directed line graph

The (directed) line graph L(G) of a digraph G is the graph defined as

follows:

• The vertex set of L(G) is the edge set of G

• (e1, e2) is an edge in L(G) iff e1 = (i , j) and e2 = (j , k) in G.
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Second-order RWs - construction

Knowing the adjacency matrix B = TS , it is then possible to define the

random walks on the line graph. However, attention must be paid to

some pitfalls, e.g., sink nodes in L(G).

Example: The non-backtracking random walk cannot be defined in this

graph:

G : 1 2 3
((

hh 66
vv

The Hashimoto graph and matrix

The non-backtracking random walk can be associated to the RW on the

Hashimoto graph, whose adjacency matrix is the Hashimoto matrix

H = B − B ◦ BT ,

where ◦ is the Hadamard (entrywise) matrix product.
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Second-order RWs - construction

Knowing the adjacency matrix B = TS , it is then possible to define the

random walks on the line graph. However, attention must be paid to

some pitfalls, e.g., sink nodes in L(G).

The factorization B = ST helps in devising efficient algorithms for matrix-

vector products in L(G). As a result, if graphs and matrices are sparse

then the computational overhead of 2nd-order RWs is irrelevant.

After defining a sound RW on L(G), the quantities of interest need to be

transferred back to the original graph: stationary density, hitting times,

return times. . .
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Second-order RWs - stationary density

• L : V 7→ E , the “lifting matrix”

• R : E 7→ V , the “restriction matrix”

{Wt} {Xt}
L

ll
R ,,
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Restrict

Lift

• The lifting matrix L apportions P(Xt = i) among the incoming

links and determines P(Wt = e) for any edge e = (∗, i);

• the restriction matrix collects in each node i ∈ V the

occupancy probabilities of incoming links, so that

P(Xt = i) =
∑

e=(∗,i) P(Wt = e). Basically, R = TT .
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Second-order RWs - stationary density

• L : V 7→ E , the “lifting matrix”

• R : E 7→ V , the “restriction matrix”

{Wt} {Xt}
L

ll
R ,,
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Lift

Theorem

Let P̂ be the transition matrix of {Wt}. If P̂ is ergodic with

stationary density π̂ then the pullback matrix P = RP̂L is

irreducible, column stochastic, and

Pij = P(Xt+1 = i |Xt = j), ∀t ≥ 1.

The stationary density of P is π = Rπ̂.
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Hitting times and return times for 2nd-order RWs

Pseudo-theorem

The second-order hitting times matrix for {Xt} can be obtained by

an appropriate “squeezing” of the hitting times matrix for {Wt}.
(Rigorous statement and explicit formulas in reference.)

Theorem

Let ρ̃i be the 2nd-order return time to i ∈ V of {Xt}. Then

ρ̃i = 1/πi ,

where π = (π1, . . . , πn)T is the stationary density of the pullback

matrix P = LP̂R.
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Examples

network nodes edges diam.

Guppy 98 725 5

Dolphins 53 150 7

Householder93 73 180 5
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Figure 1: The mean hitting time (

∑n
j=1 τi→j)/n computed from classical

(x-axis) or non-backtracking (y -axis) random walks.

Red dotted line: the y = x line.
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Figure 2: The non-backtracking mean access time mi =
∑n

j=1 πjτi→j .

In classical (first-order) rw.s we have mi = κ, Kemeny’s constant.

network Guppy Dolphins Householder93

Kemeny 119.03 84.524 97.697
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Three-mode stochastic tensors

Three-mode tensor: P = (Pijk) ∈ Rn×n×n.

Tensor-vector-vector product: z = Pxy is the vector

zi =
∑
j ,k

Pijkxjyk .

Z-eigenvector: A vector x 6= 0 such that Pxx = λx for some λ ∈ R.

Let P be a stochastic tensor, Pijk ≥ 0 and
∑

i Pijk = 1. If x , y ∈ S
and z = Pxy then z ∈ S.

The equation x = Pxx admits at least one solution x ∈ S. But

there can also be Z-eigenvectors with |λ| ≥ 1.
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A simplified approach

Previously introduced notation:

• Y (t): joint probability matrix, Y (t)ij = P(Xt = i ,Xt−1 = j)

• P: stochastic transition tensor, Pijk = P(Xt+1 = i |Xt = j ,Xt−1 = k)

• x(t): probability vector, x(t)i = P(Xt = i).{
Y (t + 1)ij =

∑
k PijkY (t)jk

x(t + 1) = Y (t + 1)e.

Although exact, this approach requires the time-consuming computation

of the sequence of joint probability matrices {Y (t)}.

Idea

Approximate the exact model by condensing the information in the n × n

matrix Y (t) into one or two probability n-vectors, e.g., replace Y (t) by

x(t)x(t − 1)T .
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Structured, 2nd-order stochastic process

• 2nd-order process xk+1 = Pxkxk−1 [Li, Ng 2014], [Wu, Chu 2017]

• Bilinear (shifted) power method [Kolda, Mayo 2011]

xk+1 = αPxkxk + (1− α)xk

• Nonlinear PageRank [Gleich, Lim,Yu 2015]

xk+1 = αPxkxk−1 + (1− α)v , α ∈ (0, 1), v ∈ S.

• Spacey random walk [Benson, Gleich, Lim 2017]{
xk+1 = Pxkyk

yk+1 = ckxk + (1− ck)yk .

12



Dobrushin-type coefficients for 3-mode tensors

Let S = {x ≥ 0, eT x = 1} be the set of probability n-vectors

The Dobrushin coefficient

T (P) = max
x∈S

sup
y :eT y=0

‖Pxy + Pyx‖1
‖y‖1

.

Explicit formula:

T (P) =
1

2
max
j,k1,k2

∑
i

|Pijk1 − Pijk2 + Pik1j − Pik2j |

Properties:

• 0 ≤ T (P) ≤ 2

• T (P) = 0 ⇔ Pijk = vi for some v ∈ S.

• If x = Pxx and x ′ = P′x ′x ′ (probability vectors) then

‖x − x ′‖1 ≤ ‖P− P′‖1/(1− T (P)).
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Applications: nonlinear PageRank

Let v ∈ S. The nonlinear PageRank vector

x = αPxx + (1− α)v x ∈ S,

corresponds to the stationary solution of

xk+1 = αPxkxk + (1− α)v

= (αP + (1− α)V)xkxk

where Vijk = vi and x0 ∈ S. Note: T (V) = 0.

Theorem

If αT (P) < 1 (e.g., α < 1/2) then the solution is unique.

Moreover, ∀x0 ∈ S the iteration converges to x and

‖xk − x‖1 ≤ (αT (P))k‖x0 − x‖1.
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